Electronic skin stretched to new limits

An electrically conductive hydrogel that takes stretchability, self-healing and strain sensitivity to new limits has been developed at KAUST. “Our material outperforms all previously reported hydrogels and introduces new functionalities,” says Husam Alshareef, professor of materials science and engineering.

Future quantum technologies may exploit identical particle entanglement

Usually when physicists perform quantum entanglement between particles—whether it be qubits, atoms, photons, electrons, etc.—the particles are distinguishable in some way. Only recently have physicists demonstrated the feasibility of generating entanglement between particles that are completely identical. Interestingly, this entanglement exists just because of the indistinguishability of the particles, without any interaction between them.

When the river runs high

A massive world-wide study of dry riverbeds has found they’re contributing more carbon emissions than previously thought, and this could help scientists better understand how to fight climate change.